

## AML CONSULTANTS ABN 83 346 637 133

Level 1, 1019 High Street, Armadale Victoria 3143, Australia Tel: +61 3 9822 4573 Fax: +61 3 9822 0273 website: www.amlconsultants.com.au

## **ENGINEERING CALCULATIONS**

PROJECT:

MANWAY

CLIENT:

F.I.A.S.S. PTY. LTD.

DOCUMENT TITLE:

### MANWAY CALCS TO AS 1210 CODE

DOCUMENT NO:

A09-0682-EC-01

© COPYRIGHT OF AML CONSULTANTS. THIS DOCUMENT IS THE PROPERTY OF AML CONSULTANTS AND MAY NOT BE COPIED IN PART OR FULL, DISTRIBUTED, MADE KNOWN OR OTHERWISE USED WITHOUT THE EXPRESS AUTHORITY OF AML CONSULTANTS.

| ·   |                        |          |          |         | ········ |
|-----|------------------------|----------|----------|---------|----------|
|     |                        |          |          |         |          |
|     |                        |          |          |         |          |
|     |                        | 1.       |          |         | 1_       |
| А   | Issued for Information | 16/12/09 | U D      | AD      | K        |
| Rev | Description            | Date     | Prepared | Checked | Approved |

| Project:                   | MANWAY    | an a subsect a subsect of the subsec | 1                |                                     |                        |                |
|----------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------|------------------------|----------------|
| Subject:                   | DESIGN D  | ΑΤΑ                                                                                                             | <u></u>          | Page:                               |                        |                |
| Prepared:                  | yd        | Date:                                                                                                           | 9-12-2009        | Checked                             | : <u>Xe</u>            | Date: 16/12/04 |
| CLIENT                     |           | F.I.A.S.                                                                                                        | S. PTY. LTD.     |                                     |                        |                |
| DOCUME                     | NT TITLE  | MANWAY                                                                                                          | CALCULATION      | S TO AS 1210 C                      | ODE                    |                |
| ITEM No.                   |           |                                                                                                                 |                  |                                     |                        |                |
| JOB DES                    | CRIPTION: | E.I.A.S.S.<br>calculation                                                                                       | Pty Ltd have com | missioned AML (<br>/ to AS 1210 Cod | Consultants to p<br>e. | prepare        |
| DATA                       |           |                                                                                                                 |                  |                                     |                        |                |
| DESIGN C                   | ODE:      |                                                                                                                 | AS               | 1210-1997 (Amd                      | t. 3)                  |                |
| CLASS OF                   | CONSTRU   | JCTION:                                                                                                         |                  | 3                                   |                        |                |
| DESIGN P                   | RESSURE:  | :                                                                                                               |                  | 810 kPag                            |                        |                |
| DESIGN T                   | EMPERATI  | URE:                                                                                                            |                  | 100 °C                              |                        |                |
| CORROSION ALLOWANCE:       |           |                                                                                                                 |                  | 0 mm                                |                        |                |
| RADIOGR                    | APHY:     |                                                                                                                 |                  | NIL                                 |                        |                |
| POSTWELD HEAT TREATMENT:   |           |                                                                                                                 | Г:               | NIL                                 |                        |                |
| HYDROSTATIC TEST PRESSURE: |           |                                                                                                                 | RE:              | 1215 kPag                           | [top of vesse          | ]              |
|                            |           |                                                                                                                 |                  |                                     |                        |                |

#### MATERIAL SPECIFICATION (Refer drawing for other materials)

| HEAD   | ASTM A 240 - 316 |
|--------|------------------|
| FLANGE | ASTM A 240 - 316 |

#### REFERENCE DOCUMENTS

Drawings: Art. P.I.P.S 45 (Manway door specs) Other: - Data Sheet

Project: MANWAY
Subject: DESIGN STRESS / TEST PRESSURE

Prepared: yd

DESIGN TENSILE STRENGTHS / TEST PRESSURE (AS 1210-1997 Clause 3.3 & 5.10)

Date: 09-12-2009

Checked:

Ap

Page: 2 Date: 16/12/09

Calculation Sheet

| AML CO               | ONSULT/                   | ANTS             |                     |                               |                            |                             | Calc        | ulation She      | et                |
|----------------------|---------------------------|------------------|---------------------|-------------------------------|----------------------------|-----------------------------|-------------|------------------|-------------------|
| Project:             | MANWAY                    |                  |                     |                               |                            |                             |             |                  |                   |
| Subject:             | MANWAY I                  | LANGE            |                     |                               |                            |                             | Page        | <u>;</u>         |                   |
| Prepared:            | yd                        | Date:            | 9-12-2009           |                               | Checked:                   | <u>Ae</u>                   | Date        | : 16/12/0        | 24                |
| NARROW-I             | ACE SUP-O                 | N ELANGE         | S WITH RING         | GASKET (A                     | S 1210-1997                | Clause 3.21.                | 6)          |                  |                   |
| <u>In a arcont</u> 1 | THE OLD OF                |                  | <u>o mininada e</u> |                               |                            |                             | <u> </u>    |                  |                   |
| Loose / Opt          | ional - type ?            |                  | Loose               |                               |                            |                             |             |                  |                   |
| Int. design p        | oressure                  | P =              | 0.810               | MPa(g)                        | Flange ridigity            | y to ASME VI                | ll Div. 1   | No               |                   |
| Ext. design          | pressure                  | Pe =             | 0.000               | MPa(g)                        | Flange to with             | nstand full bo              | It force    | No               |                   |
| External mo          | oment                     | M =              | 0.00                | kNm                           | Design tempe               | erature                     | Temp =      | 100.00           | °C                |
| Axial force          |                           | ***** <b>F</b> = | 0.00                | kN                            | Int. corrosion             | allowance                   | с =         | 0.00             | mm                |
| Static liquid        | head                      | LH =             | 0                   | mm                            | Material dens              | ity :                       | ρ =         | 8027             | kg/m <sup>3</sup> |
| Specific gra         | wity                      | SG =             | 1.00                |                               | Equivalent pr              | essure                      | Pe≖         | 0.000            | MPa(g)            |
| DP + static          | head                      | P' =             | 0.810               | MPa(g)                        | Calculation p              | ressure                     | Pt =        | 0.810            | MPa(g)            |
|                      |                           |                  |                     | <u>Design str</u><br>(design) | <u>ess (MPa)</u><br>(test) |                             |             |                  |                   |
| Flange               |                           | ASTM A 2         | 40 - 316            | 138.00                        | 138.00                     |                             |             |                  |                   |
| Bolts                |                           | ASTM A1          | 93 B8M (316)        | 129.00                        | 129.00                     |                             |             |                  |                   |
| Gasket               |                           | o-nng            | 170.00              |                               | The sine is broked         | L .                         | 1(0)        | Column           |                   |
| Flange outs          | side dia.                 | A =              | 470.00              | mm                            | Facing sketc               | n :                         |             | Column           | 11                |
| Inside diam          | leter                     | B =              | 450.00              | mm                            | Rubbin watn                | r                           | - w         | 1//a<br>0.00     |                   |
| Bolt circle d        | liameter                  | - U -            | 070.00              | 111111                        | Gasket seatin              | na etrace                   | v =         | 0.00             | MPa               |
| Rolt type            | 4                         | Size ·           | M16                 |                               | Gasket width               | 19 30 633                   | y –<br>N =  | 10.00            | mm                |
| Bolt outside         | ,<br>diameter             | Dh =             | 16.00               | mm                            | Outside diam               | leter                       | God =       | 470.00           | mm                |
| Area at roo          | t of thread               | $\Delta r =$     | 144.00              | mm <sup>2</sup>               | Inside diame               | ter                         | Gid =       | 450.00           | mm                |
| Total rend           | holt area                 | Am =             | 1042.99             | mm <sup>2</sup>               | Basic dasket               | seat. width                 | bo =        | 5.00             | mm                |
| Actual total         | bolt area                 | An =             | 1152.00             | mm <sup>2</sup>               | Eff dasket se              | ating width                 | b =         | 5.00             | mm                |
| Actual total         | oon area                  | , 12             | < Bolting O.k       | (. >                          | Gasket-force               | diameter                    | -<br>G =    | 460.00           | mm                |
| Read, no o           | f bolts                   | n.rea =          | 7.2                 | -                             | P/partition le             | ngth                        | L =         | 0.00             | mm                |
| Actual no o          | f bolts                   | n.act =          | 8                   |                               | P/partition ga             | isket width                 | Np =        | 0.00             | mm                |
| Corr. inside         | e diameter                | Bc =             | 450.00              | mm                            | P/part. seatin             | ig width                    | bop =       | 0.00             | mm                |
|                      |                           |                  |                     |                               | P/part.eff.gas             | sk.seat.width               | bp =        | 0.00             | mm                |
| Bolt Spacin          | ig (Pb) :                 | Min :            | 44                  | mm                            | Gasket width               | check                       | Nmin =      | N/A              |                   |
|                      |                           | Max :            | 1232                | mm                            |                            |                             |             |                  |                   |
|                      |                           | Actual :         | 200                 | mm                            |                            |                             |             |                  |                   |
| Factor               | ····                      | <u>K =</u>       | 1.044               | Y =                           | 44.204                     | ·····                       |             |                  | 1                 |
| Load                 |                           |                  | Force (N)           | Mon                           | nent Arm (mm)              | CF                          | N           | /loment (Nmm)    |                   |
| I otal hydro         | end-force                 |                  | 1.345E+05           | hp                            | 20.00                      | 1.00                        | Mo =        | 3 8635+06        |                   |
| Difference           |                           | ни –<br>Нт –     | 5 7865+03           |                               | 27.50                      | 1.00                        | MT =        | 1 591E+05        |                   |
| Total comp           |                           | HP =             | 0.000E+00           |                               | 21.00                      | 1.00                        |             | 1.0012.00        |                   |
| Bolt force-h         | ydro, force               | Hg =             | 0.000E+00           | hg =                          | 25.00                      | 1.00                        | Mg =        | 0.000E+00        |                   |
| 4 <u></u>            |                           | ,                | - I                 | operating                     | gask. seating              | a <u>,, , , , , , , ,</u> . | [3.21.6.4.  | 1(1),(2)]        |                   |
| Bolt Forces          | s (N) -                   |                  | Wm1.2 =             | 134546                        | 0                          |                             | -           |                  |                   |
| Mating flan          | ce loads (N) :            |                  | =                   | 0                             | 0                          |                             |             |                  |                   |
| Read Area            | of Bolts (mm <sup>2</sup> | ):               | Am1.2 =             | 1043                          | 0                          |                             | [3.21.6.4.  | 3]               |                   |
| Flance Des           | sian Bolt Force           | es (N) :         | W =                 | 134546                        | - 141577                   |                             | [3.21.6.4.  | -<br>4(1),(2)]   |                   |
| Alternative          | Design Rolt               | oad (N)          | Wnew =              | : 0                           |                            |                             |             |                  |                   |
| Total Mom            | ents (Nmm)                |                  | 'M =                | -<br>4.022E+06                | 3.539E+06                  |                             |             |                  |                   |
| Read Thick           | (ness (mm) ·              |                  | t12 =               | 53 51                         | 50 19                      |                             |             |                  |                   |
| Thickness            | solootod                  |                  | т =                 | 100.00                        | mm                         | (eyc) of adde               | d allowance | e for raised fac | e)                |
| Inckness             | acieuleu                  |                  |                     | 100.00                        | 113131                     | Level of adde               | a anowano   |                  | ~/                |

Thickness selected

**Calculation Sheet** 

| Project:                                  | MANWAY       | and a start and a start of the |               | و المراجع |                  |           | -<br>arana a am a musica (a satar a mata Matanimata | unan en sen an anti-sen anti-s |  |
|-------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------|------------------|-----------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Subject:                                  | MANWAY       | FLANGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                   |                  | 1         | Page:                                               | 4                                                                                                               |  |
| Prepared:                                 | yd           | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9-12-2009     | CI                                                                                                                | necked:          | fte       | Date:                                               | 16/12/09                                                                                                        |  |
|                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                   |                  |           |                                                     |                                                                                                                 |  |
| Flange Stre                               | sses (MPa) : |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>operat</u> | ing                                                                                                               | <u>gasket se</u> | eating    |                                                     |                                                                                                                 |  |
|                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Actual        | Allowable                                                                                                         | Actual           | Allowable |                                                     |                                                                                                                 |  |
| Tangential - S <sub>T</sub>               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39.51         | 138.00                                                                                                            | 34.77            | 138.00    |                                                     |                                                                                                                 |  |
| Bolt Stress                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 116.79        | 129.00                                                                                                            | 0.00             | 129.00    |                                                     |                                                                                                                 |  |
| External Pre                              | essure:      | < Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Applicable >  |                                                                                                                   |                  |           |                                                     |                                                                                                                 |  |
| H =                                       | 0.00E+00     | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HT =          | 0.00E+00 N                                                                                                        |                  | Wm1 =     | 0.00E+00 N                                          |                                                                                                                 |  |
| HD =                                      | 0.00E+00     | ) N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hp =          | 0.00E+00 N                                                                                                        |                  | Wm2 =     | 0.00E+00 N                                          |                                                                                                                 |  |
| Am2 =                                     | . 0.00       | ) mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W =           | 1.42E+05 N                                                                                                        |                  |           |                                                     |                                                                                                                 |  |
| Mo (op) =                                 | 0.00E+0      | ) Nmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t (op) =      | 0.00 mm                                                                                                           |                  |           |                                                     |                                                                                                                 |  |
| Mo (gkst) =                               | 0.00E+00     | ) Nmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t (gskt) =    | 0.00 mm                                                                                                           |                  |           |                                                     |                                                                                                                 |  |
| Flance Rigidity - ASME VIII Div. 1 (2-14) |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                   |                  |           |                                                     |                                                                                                                 |  |
| Rigidity fact                             | or           | KI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = n/a         |                                                                                                                   |                  |           |                                                     |                                                                                                                 |  |
| Rigidity inde                             | ex           | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = n/a         |                                                                                                                   |                  |           |                                                     |                                                                                                                 |  |
| Estimated w                               | /eight :     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 kg          |                                                                                                                   |                  |           |                                                     |                                                                                                                 |  |

Note:

-

A09-0682

**Calculation Sheet** 

| Project:                | MANWAY                                |                     |                          |                                                  |               |                     |         | ***         |  |
|-------------------------|---------------------------------------|---------------------|--------------------------|--------------------------------------------------|---------------|---------------------|---------|-------------|--|
| Subject:                | MANWAY L                              | _ID                 |                          | ferm = with fermitian feel with the addressed of | Page: 5       |                     |         |             |  |
| Prepared:               | vd                                    | Date:               | 9-12-2009                |                                                  | Checked:      | cb                  | Date: ( | 6/12/04     |  |
| ·                       | · · · · · · · · · · · · · · · · · · · |                     |                          |                                                  |               | T.                  | ·       |             |  |
| <u>TORISPHER</u>        | CAL ENDS                              | <u>- (AS 1210-1</u> | 997 Clause               | <u>3.12)</u>                                     |               |                     |         |             |  |
| Material specification: |                                       |                     | ASTM A 24                | 0 - 316                                          |               |                     |         |             |  |
| Class of cons           | struction                             |                     | Class                    | ; 3                                              |               |                     |         |             |  |
| Design pressure @ top   |                                       |                     | P =                      | 0.810                                            | MPa(g)        | Pext =              | n       | /a          |  |
| Design temperature      |                                       |                     | Temp =                   | : 100.00                                         | °C            |                     |         |             |  |
| Design stren            | gth - test temp                       | ). ***              | fn =                     | 138.00                                           | MPa           |                     |         |             |  |
| Design streng           | gth - design te                       | emp,                | f =                      | 138.00                                           | MPa           |                     |         |             |  |
| Static liquid h         | nead                                  |                     | LH =                     | • 0                                              | mm            |                     |         |             |  |
| Specific grav           | ity                                   |                     | SG =                     | 1.000                                            |               |                     |         | * 11 M M M  |  |
| Weld joint eff          | ficiency - long                       | itudinal            | ηl =                     | 1.00                                             |               |                     |         |             |  |
| Weld joint eff          | ficiency - circu                      | umferential         | η <b>c</b> =             | • 0.60                                           |               |                     |         |             |  |
| Corrosion all           | owance - inte                         | rnal                | ci =                     | .00                                              | mm            |                     |         |             |  |
| Corrosion all           | owance - exte                         | ernal               | ce =                     | . 0.00                                           | mm            |                     |         |             |  |
| Outside diam            | neter                                 |                     | Do =                     | 436.00                                           | mm            |                     |         |             |  |
| Inside crown radius     |                                       |                     | R =                      | 419.50                                           | mm            |                     |         |             |  |
| Inside knuckle radius   |                                       |                     | г =<br>                  | 3.50                                             | mm            |                     |         |             |  |
| Straight flange         |                                       |                     | S⊦ =<br>                 | 32.40                                            | mm            |                     |         |             |  |
| Nominal thickness       |                                       |                     | =                        | 5.00                                             | mm            |                     |         |             |  |
| After forming           | allowance                             |                     | Ar =                     | = 10.00                                          | <b>%</b>      | N                   | 0.41    | 07          |  |
| Inside tanger           | nual neight                           |                     | n =                      | 50.10                                            | mm            | IV! =               | 3.40    | 57<br>50 mm |  |
| Inside diame            |                                       |                     | 10 =<br>10a =            | 420.00                                           |               | RC =                | 419.    | 50 mm       |  |
| Conoded un              |                                       |                     | Buu -                    | - 420.00                                         | MDo/a)        | 10 -                | 0.3     | 50 11111    |  |
| Colouiation n           | pressure                              |                     | гця <del>*</del><br>D' - | · 0.000                                          | MPa(g)        |                     |         |             |  |
| Galculation p           | nessule                               |                     | P -                      | - 0.010                                          | MFa(y)        |                     |         |             |  |
| Minimum Cal             | Iculated Thic                         | <u>kness:</u>       |                          | Pint                                             |               |                     |         |             |  |
| (a) End thick           | ness                                  |                     | [ =                      | 4.30                                             | mm            |                     |         |             |  |
| Design thickr           | ness :                                |                     | t + ci,e =               | - 4.30                                           | mm            |                     |         |             |  |
| Min. thicknes           | ss after formir                       | ng                  | Taf =                    | - 4,50                                           | mm            |                     |         |             |  |
| (b) Straight fl         | lange portion                         |                     | tsf.i =                  | 1.25                                             | mm            | [long. joint]       |         | [3.7.3(1)]  |  |
|                         |                                       |                     | ISF.c =                  | 1.04                                             | mm            | [circ. joint]       |         |             |  |
| Design thickr           | ness :                                |                     | tsF + cl,e =             | = 1.25                                           | mm            |                     |         |             |  |
| Thickness se            | elected                               |                     | Τ=                       | 5.00                                             | mm            |                     |         |             |  |
| Stress at give          | en P' & Tc                            |                     | f' =                     | 131.85                                           | MPa           |                     |         |             |  |
| Membrane st             | tress (corrode                        | ed)                 | fm =                     | = 38.34                                          | MPa           |                     |         |             |  |
| MAP - New 8             | & Cold :                              | 0.835               | MPa(g)                   |                                                  | MAWP - Ho     | ot & Corr. :        | 0.8     | 35 MPa(g)   |  |
| Shape check             | (S'                                   | (i) r approac       | :hina 6% ·               | D/T > 100                                        | No            | (or) P>690          | Yes     |             |  |
| onapo onoon             |                                       | (i) / upprous       |                          | D/tk > 300                                       | No            | tk =                | 4.      | 50 mm       |  |
|                         |                                       | N-7                 |                          |                                                  |               | ***                 | •••     |             |  |
|                         |                                       |                     | Spherical Poi            | rtion                                            | Straight Flan | ae                  |         |             |  |
| Est inside ve           | lume :                                |                     | 0.005                    |                                                  | 0.005         |                     |         |             |  |
| Est empty w             | eight ·                               |                     | 0.000                    | / ko                                             | 0.00          | 2 ka                |         |             |  |
| Est, fully floo         | ded weight -                          |                     | 11                       | ka                                               | F             | <del></del><br>6 ka |         |             |  |
|                         |                                       |                     |                          | -                                                | -             | <u></u>             |         |             |  |

Note: -

A09-0682

**Calculation Sheet** 

| Project:                                                              | MANWAY                       | <b>/</b>                                                                                                             |                  |                       |                       |                                                                |                                                                  |                                  | ·····                                |   |
|-----------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-----------------------|----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|--------------------------------------|---|
| Subject:                                                              | SWING B                      | OLTS ASSEMB                                                                                                          | LY               |                       |                       |                                                                | <u> </u>                                                         | Pag                              | je: 6,                               |   |
| Prepared:                                                             | yd                           | Date: 17                                                                                                             | -12-2009         | )                     | Chec                  | ked:                                                           | Xa                                                               | Dat                              | e: 1/12 09                           |   |
| SWING BOLTS ASSEMBLY (AS 1210-1997 Clause 3.27.3 & AS 3990-1993)<br>F |                              |                                                                                                                      |                  |                       |                       |                                                                |                                                                  |                                  |                                      |   |
|                                                                       |                              | $ \begin{array}{c} - e \\ \hline \\$ | P                |                       | t<br>No. of I<br>Hole | -lug =<br>a =<br>c =<br>d =<br>e =<br>veld =<br>ugs =<br>dia = | 10.00<br>55.00<br>15.00<br>30.00<br>22.00<br>12.00<br>2<br>16.50 | mm<br>mm<br>mm<br>mm<br>mm<br>mm |                                      |   |
| Number of t                                                           | oolts                        | N =                                                                                                                  | 8                |                       | Bolt d                | iameter                                                        |                                                                  | D                                | = 18.00 mm                           |   |
| Total bolt lo<br>Motrio                                               | ad<br>M16                    | F =                                                                                                                  | 135.00           | kN<br>mm <sup>2</sup> | Load                  | on one bi<br>UNI 9                                             | olt                                                              | F'                               | = 16.88 kN<br>- 0.00 mm <sup>2</sup> | 2 |
| Metric                                                                | IVI TO                       | AI -                                                                                                                 | 144.00           |                       | UNCA                  | UNO                                                            | -                                                                |                                  | - 0.00 mm                            |   |
| <u>PIN</u><br>Diamatan                                                |                              | ASTM A193 B8                                                                                                         | M (316)          | -                     | Viada                 | irees                                                          |                                                                  | Ev                               | - 205.00 MPa                         |   |
| Evebolt wid                                                           | th                           | up ~<br>b =                                                                                                          | 29.00            | mm                    |                       | nacino                                                         |                                                                  | 1                                | = 30.00  mm                          | 1 |
| Bending mo                                                            | oment                        | M =                                                                                                                  | 46.41            | kNmm                  | Sectio                | on modul                                                       | us                                                               | z                                | $= 402.12 \text{ mm}^3$              | 3 |
| Bearing allo                                                          | owable                       | Ba =<br>Bw =                                                                                                         | 0.514            | FY                    | Cross                 | -sectiona                                                      | al area                                                          | Ар                               | = 201.06 mm <sup>2</sup>             | ł |
| Shear stres                                                           | s                            | fs =                                                                                                                 | 41.96            | MPa                   | <                     | 75.85 M                                                        | Pa                                                               | [0.37 Fy]                        |                                      |   |
| Bearing stre                                                          | ess                          | fp =                                                                                                                 | 36.37            | MPa                   | < '                   | 105.47 M                                                       | Pa                                                               | [T 9.5.2]                        |                                      |   |
| Bending str                                                           | ess                          | fb =                                                                                                                 | 115.40           | MPa                   | < '                   | 135.30 M                                                       | lPa                                                              | [0.66 Fy]                        |                                      |   |
| Washers pr                                                            | ovided ?                     | No                                                                                                                   |                  |                       |                       |                                                                |                                                                  |                                  |                                      |   |
| <u>LUG</u>                                                            |                              | ASTM A 182 F3                                                                                                        | 816              |                       |                       |                                                                |                                                                  |                                  |                                      |   |
| Tensile Stre                                                          | ess                          |                                                                                                                      | Fu =             | 515.                  | 00 MPa                |                                                                | FY =                                                             | 205.0                            | 0 MPa                                |   |
| Cross-section                                                         | onal area                    |                                                                                                                      | A1 =             | 2.70E+                | 02 mm <sup>+</sup>    | _                                                              | Z-lug =                                                          | 1.50E+0                          | 3 mm                                 |   |
| Moment per                                                            | r iug<br>i=- ii-             |                                                                                                                      | = IVI            | 185.                  | 63 KINMIN<br>70 MID-  | 1                                                              | ed =                                                             | 11.5                             |                                      |   |
| Bearing stre                                                          | ess in lug pir<br>occ in lug | noles                                                                                                                | tDr≕<br>fb-lug = | 52.<br>61             | 13 MPa                | ~                                                              | 105.47                                                           | MPa<br>MPa                       | [1 9.5.2]<br>[0 66 Ev]               |   |
| Shear stres                                                           | s in hole are                | а                                                                                                                    | fs =             | 62 <i>.</i>           | 50 MPa                | <                                                              | 75.85                                                            | MPa                              | [0.37 Fy]                            |   |
| WEID                                                                  |                              |                                                                                                                      |                  |                       |                       |                                                                |                                                                  |                                  |                                      |   |
| 1 side or 2 s                                                         | sides weld n                 | er lua                                                                                                               |                  |                       | 1                     | Ia                                                             | ccessible o                                                      | on outer sid                     | e only]                              |   |
| Total weld t                                                          | hroat                        |                                                                                                                      | wt =             | 8.                    | 49 mm                 | .[                                                             | Zw =                                                             | 1.27E+0                          | 3 mm <sup>3</sup>                    |   |
| Bending str                                                           | ess in weld                  |                                                                                                                      | fbw =            | 145.                  | 84 MPa                |                                                                |                                                                  |                                  |                                      |   |
| Shear stres                                                           | s in weld                    |                                                                                                                      | fsw =            | 66.                   | 29 MPa                |                                                                |                                                                  |                                  |                                      |   |
| Combined s                                                            | stress in wel                | d                                                                                                                    | fw =             | 160.                  | 20 MPa                | <                                                              | 169.95                                                           | MPa                              | [0.33 Fuw]                           |   |

Note:

.

### 1. RESULTS

#### 1.1 Strand7 Computer Results In Accordance with AS 1210-1997 Clause B6

The Strand7 results are tabulated as follows to comply with the requirements of Clause B6 in AS 1210-1997.



#### 1.1.1 <u>Manway Geometry and Boundary Conditions.</u>

#### a) Model description and the assumptions.

The manway was created using brick elements. By inputting gravity as a vertical acceleration, Strand7 calculates the self-weight of the vessel based on the brick properties, which is included in the output stress results.

#### b) Software package and version

The Finite Element Analysis (FEA) was completed using the computer software package Strand7 version R2.4.

#### c) Type of mesh

The model was created using tetra four brick elements.

#### d) Loads

The loading was applied as normal pressures.



#### 1.1.2 Internal Pressure Loading.

#### e) Boundary conditions

The manway is supported on eight bolts by restraining nodes representing the bolts.

#### f) Evidence that the solution has converged

Refer to attached linear static solver summary showing the resultant loads applied to the tank.



g) Plot of deflected shape under relevant loading condition

#### 1.1.3 Deflected shape under combined load.

# h) Sufficient data to show that away from structural discontinuities the stresses are those of simple shell or strut models

Refer to stress plot 1.1.6 of the tank showing that the average hoop stress is 40 MPa. This is approximately the same as the manually calculated value in the spreadsheet of the calculations.

#### i) Stress Plot Summary

The maximum local stress in the base cone/comp pad region is 188 MPa. This value is less than 2f = 258 MPa and Fy = 207 MPa. Therefore the stresses are acceptable and the silo complies with the requirements of AS 1210.



1.1.4 Maximum Primary & Secondary Membrane & Bending Stress = 182 MPa < 3.0f





#### 1.1.5 Maximum Primary Membrane & Bending Stress = 136 MPa < 1.5f

1.1.6 <u>Maximum Primary Membrane Stress = 40 MPa <1.0f</u>